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Abstract 

The reliability of the results of the peak-position 
determination by means of various approximating 
functions - the polynomials and shape functions con- 
sidered in paper I [Gatdecka (1993). Acta Cryst. A49, 
106-115] - was examined based on test calculations 
in which both "measurement data and computer-simu- 
lated data were used. It was found that accurate 
peak-position determination must be based on a 
reasonable physical and statistical model of the 
diffraction profile. The statistical model is required 
to provide an objective criterion of the goodness of 
fit. The goodness of fit is a necessary but not sufficient 
requirement for obtaining accurate results. To provide 
unbiased and stable enough (independent of scanning 
range) results, the function to be used must, in addi- 
tion, be continuous and give a good approximation 
to known physical models of the diffraction profile. 
It was proved that the use of a reasonable shape 
function - here, a pseudo-Voigt function with a linear 
(or exponential) asymmetric factor, the best of the 
functions considered - leads to accurate enough and 
highly stable results. Results obtained using poly- 
nomials, even when the goodness of fit is being care- 
fully checked, are no more precise and are less stable 
and so less accurate than those obtained using the 
carefully selected shape function. Only in the case of 
a parabola - the simplest and the most preferred 
among polynomials - there is a possibility of reducing 
the bias of outcomes by an extrapolation of results 
obtained for various scanning ranges. However, the 
improvement also requires a reasonable model (here, 
the shape function mentioned above). 

1. Introduction 

In paper I (Galdecka, 1993), in view of some disad- 
vantages of the polynomial approximation, the use 
of some other analytic descriptions of the diffraction 
profile was considered. The descriptions available 
were reviewed, analysed and discussed in all aspects. 
In the present paper (paper II), results of test calcula- 
tions are reported, as a basis for a discussion of the 
effect of the best model of the diffraction profile on 
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the accuracy of the peak-position determination. The 
outcomes obtained using selected shape functions are 
compared with those obtained using polynomials and 
the first group of test calculations reported relates to 
the polynomial approximation. Reasonable statistical 
criteria are used for testing the goodness of fit. 

2. Data and criteria used in test calculations reported 

2.1. Data sets used in the tests 

To find out the accuracy of the peak-position 
determination that can be achieved in practice and 
which of the approximating functions considered will 
give the most accurate results, test calculations were 
performed by approximating a series of data with 
various functions by least-squares fitting. In the tests 
two kinds of data were used: (i) real measurement 
data; (ii) data obtained using computer modelling. 

The first kind of data [(i)] was used to show how 
various methods of approximation are applicable to 
an arbitrary set of real measurement data. The series 
of data consisted of M - - 1 0  collections of n--61 
intensity values, h ~ , . . . ,  h,,, recorded within a diffrac- 
tion profile of the 444 interference of a silicon single 
crystal with a Bond-system diffractometer (Lukas- 
zewicz, Kucharczyk, Malinowski & Pietraszko, 1978). 
The peak intensity was H-~ 10000 counts and the 
half-width of the profile was toh-~480" (0.133°). The 
intensities were recorded at the truncation level 

(hl+h,,) /2H=O.16. ( l a )  

A constant scanning step, Ato = 20", was used and the 
angular values covered the range 

2S2 = ( n -  1)a~. ( lb)  

Repeated measurements were used for estimation of 
the mean values (sample mean) and the standard 
deviations of the peak positions determined. To esti- 
mate the exl~ected values of the goodness-of-fit 
parameters, R and ~, for various scanning ranges, 
the model of variances and covariances derived 
by Galdecka (1985) (see also paper I, § 2.6) was 
used with the parameters Or(tO)R=l" , tr(tO)s=2" 
and o' ( I ) / I  = 0.0055. The corresponding calculated 
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values, R and or, resulting from the approximation 
by least-squares fitting reported here (§§ 3 and 4) are 
the mean values over M = 10 repeated measurements. 

The collections of real measurement data were 
modified by rejecting exterior points to test the effect 
of the scanning range, 2/2, on the peak position deter- 
mined. It was, however, impossible to evaluate objec- 
tively the accuracy of the peak-position determination 
since the true peak position, top, of the underlying 
'pure'  profile (not affected by statistical errors) was 
unknown. Ultimately, it was assumed that the ' true' 
peak position was that of the approximating function 
giving the best results (§ 4.4). Since, as mentioned in 
paper I, § 1.1, the Bragg angle in the Bond method 
is determined from the difference between two 
angular positions, too, i and too,2, so the position of 
the origin of the to scale is not important, the too 
values reported will be related to an arbitrary origin 
(here, too-~ 50"). 

In case (ii), to check the accuracy in a more objec- 
tive way, a series of computer-simulated data was 
used. With the values retained for basic parameters 
characterizing the real measurement described in 
point (i), M = 10, Ao, = 20", H ~- 10 000, toh = 480" and 
with the assumption that the 'recorded'  counts obeyed 
Poisson statistics and that the true peak position was 
at we = 50" (as for real data), one of the distributions 
derived by Johnson (1949) [see paper I, (24a), (24d)],  

v ( u )  = (1 + u2) -'/~ 

x exp (-0.5b{1 + e In [u + (1 + u2)1/2]}2), (2) 

with parameters b = 2.0, e = 0.1, was used to model 
the pseudoexperimental data. 

Additional test calculations were performed to 
compare selected approximating functions and 
known models of the diffraction profile. The tests will 
be described in § 4.2, together with the data used in 
them. 

2.2. x 2 test for  the goodness o f  f i t  

As mentioned in paper I (§ 2.6), to treat a given 
approximating function as a model of the diffraction 
profile within a given scanning range 2/2, the mean 
deviance, orb, obtained by least-squares fitting must 
be equal to the mean (over 2/2) standard deviation 
of observations, t~h. The equality or otherwise can be 
tested using the X 2 test. As results from statistical 
considerations [for more details see, for example, 
Hamilton (1964, § 2-8)], to accept a description con- 
sidered at a given significance level a (say a = 0.1), 
the following condition must be satisfied: 

[x~ , , -o /2 /  ( n - m ) ]'/2 < orb/4,., 
2 <-[X, ,~ , /2 / (n -m)]  1/2, (3a) 

where 2 2 X~..~-a/2 and X,,.,~/2 are critical values of the X 2 
distribution for v = n - m  degrees of freedom. For 

large v values (v > 100), an approximate formula may 
be used (Abrahams, 1969): 

orh/ d'h <-- {1 -- 2/9(n -- m ) + u,~[2/9( n -- m )]t/2} 3/2, 

(3b) 

where u,~ is the value of the normal distribution 
corresponding to the probability a. Since, as men- 
tioned above, the orb values reported in the paper 
are the mean values based on M = 1 0  repeated 
measurements, the number of degrees of freedom, 
v = M n - m ,  is so large in this case that an almost 
'exact equality' is required, 

0.9 < Orh/Or h ( 1.1. (3C) 

As can easily be shown, the ratio orh/~h in (3a),  (3b), 
(3c) may be replaced by the ratio R~ R of correspond- 
ing discrepancy factors. Since many authors prefer 
the latter criterion, both goodness-of-fit parameters, 
trh and R, as compared with their expected values, 
t~ n and R, will be reported in §§ 3 and 4. 

2.3. Measures o f  accuracy, precision and stability 

A measure of accuracy of a single peak-position 
determination is the actual error in the peak position, 
dtop, i.e. the difference between the peak position top 
determined and the ' true' peak position too, 

dtop = top - too. (4) 

Normally, the true peak position is unknown. 
However, we shall assume that the 'true' peak position 
is that of the best model function describing the 
measured diffraction profile (§ 4.3). 

Since the actual peak position top is affected by 
both the systematic error (the bias) Atop and the 
statistical error ~top, the difference defined by (4) will 
consist of two components,  

d t o p  = Atop  + 8top,  (5)  

where 

E(Stop)=0,  so Atop=E(dtop)  

(E denotes the expected value). 
To evaluate the actual error, its two components 

and their total effect on the accuracy of a single peak 
position, let us consider limits of the confidence inter- 
val, calculated for M values top determined from 
repeated measurements. Using Student's t distribu- 
tion for a chosen significance level a (say ot = 0.10) 
and v = M - 1  degrees of freedom, one can assess 
with the probability 1 - a  (0.90) that the result of a 
single peak-position determination, top, will lie inside 
the interval 

O~p -- S ( t o p ) t a , ~ M  -1/2 <- top <- top + s(  top) t  .... M -I /2 ,  

(6) 

where o3p is the sample mean and s(top) is the sample 
standard deviation. By comparing (4) and (6) we 
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obtain an est imator  of  a likely actual error of  a single 
peak-posi t ion determinat ion,  

~ p  -- to o -- s (  top ) t~,~M -1/2 

dtoe ~ ~ p  - too + s ( t o p ) t a , ~ M  -1/2 (7) 

As a measure  of  the accuracy of  a single peak- 
position determinat ion,  we shall use the max imum 
absolute value of  the actual  error  described by (7). 
For M = 10 ( z, = 9) and a = 0.1 we obtain to.l,9 = 1.833, 
so [cf. (7)] 

dtoP, max = °~P - tool -F 0.58s (top). (8a)  

For M large enough,  it is possible to separate  the 
bias and the statistical error  from the actual error,  
since 

Atoe = oSe - too (8b) 

and 

t$(top) = s ( t o p ) t ~ , ~ M  -1/2. (8C) 

Since the da ta  used for the peak-posi t ion determi- 
nat ion may  be collected within different (nar rower  or 
wider) scanning ranges,  it is required that the results 
being obta ined should be stable, i.e. independent  of  
the scanning range. As a measure  of  the stability, we 
propose  to use the ratio of  the max imum difference 
of  results obtained within the range of  scanning 
ranges 21"2 permit ted by the statistical criterion [ (3a ) ]  
to the length of  the range,  

st = ( t o 0 , m a x  - -  to0,min)/(2[~2 -- 2[~1), (9) 

where toO,max and to0,min are extreme values of  the peak 
p o s i t i o n ,  2J~ 2 is the widest  scanning range and 2,Q 1 
is the narrowest .  

3. Polynomial approximation 

As ment ioned in paper  I, § 1.2, there are two basic 
problems of  peak-posi t ion determinat ion by use of  
polynomial  approx imat ion :  

(i) a l imited range of  arguments  for which a given 
polynomial  might be t reated as a 'model '  of  the 
diffraction profile and for which the results obtained 
were free from any bias; 

(ii) dispersion of  results that increases with 
decreasing scanning range. 

These problems are i l lustrated in Figs. 1 and 2. The 
figures present the use of  a parabola  and a sixth- 
degree polynomial .  In fact, many  more test calcula- 
tions were per formed using polynomials  of  all degrees 
from m - - 2  to m = 12. The examples  shown in Figs. 
1 and 2 are representat ive for all the tests and  illustrate 
well the substance of  the problem; it is thus unnec- 
essary to show more  examples.  In the tests reported,  
both 'o rd inary '  polynomials  and the Gram or thogonal  
polynomials  were used. Results obtained did not vary 
for m-< 12, but calculations by means  of  the G r a m  
polynomials  were much faster. 

As shown in Figs. l ( a )  and 2(a ) ,  the actual error 
in a single peak  posit ion defined by the max imum 
distance between limits of  a given confidence interval 
and the ' t rue peak posi t ion '  [cf. (Sa)]  exceeds 1" 
(3 x 10-4°), so is greater  than  that  permit ted for the 
accuracy of  1 part  in 106 (see paper  I, § 1.1). Consider-  
ing the range of  scanning ranges 2g2 permit ted for a 
given polynomial  by the statistical criterion [ (3a) ;  
see Figs. 1 and 2, (b) and (c)] ,  the actual error,  in 
the case of  measurement  data ,  ranged from 2.4 to 3.7" 
for a least-squares pa rabo la  (m --2) and f rom 2 to 6" 

~t'/.3 (c) (c) 

1.0 

150 

1 0 0  

% ~ " ~  [ (a)'i'! 

. " x ' . . . / ' °  . , 

_ . . ~  / ,  

~ ~/2 [ zoo ~/2 ~oo ~ 6do zs~t,,3 

Fig. 1. Peak-position determination by a polynomial approxima- 
tion, as dependent on the scanning range 2F~, for real measure- 
ment data. A constant scanning step, A~, = 20", and hence a 
changeable number of points, n, were used. The left parts of the 
figure relate to a least-squares parabola (m = 2); the right parts 
to a sixth-degree polynomial (m =6). (a) The mean values of 
the peak positions determined (o--o), limits of successive 
confidence intervals ( . . . .  ), and an approximate value of the 
'true' peak position (tOp = 49.9"; cf. § 4.4). For m = 2 the mean 
values have been approximated with a parabola (.--) (as 
described in § 5). (b), (c) Values of statistical parameters of the 
goodness of fit, or h and R, respectively. The values obtained in 
the course of calculations by least-squares fitting are marked o 
while the corresponding expected values are drawn with a con- 
tinuous line (real counting statistics) and broken line (Poisson 
counting statistics). The filled circles • relate to cases in which 
the statistical criterion [(3)] is not satisfied. 
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for a sixth-degree polynomial (m = 6). In the case of 
computer-simulated data (Fig. 2; the lower level of 
statistical errors of observations), the actual error 
ranged from 1.2 to 3.5" for m = 2 and from 1.3 to 
10.6" for m = 6. Thus, the actual error is no less for 
a sixth-degree polynomial (in general, a higher-degree 
polynomial) than for a parabola. 

The question arises of  whether it is possible to 
achieve the accuracy desired. How can the total error 
be reduced? A comparison of (a),  (b) and (c) of Fig. 
1 with the corresponding parts of  Fig. 2 reveals that 
the equality of crh and ~h (or R and /~) [(3)] is a 
necessary but not precise enough indicator to show 
how to select the scanning range to minimize the 
actual error. It might be added that neither minimum 
trh nor minimum R, criteria commonly used in prac- 
tice, can serve as such a precise indicator. In par- 
ticular, the discrepancy factor R decreases when 
n - m  decreases [see paper I, (30c) and (34)], reach- 
ing zero when the approximation becomes an inter- 
polation. This manifests itself in an enormous 
increase of the actual error. 

Let us consider now two components of the actual 
error: the statistical error (here defined by the sample 
variance or the sample standard deviation) and the 
systematic error (bias), i.e. the difference between the 
expected value (in practice, the sample mean) and 

the ' true' (here, known) value. For real measurement 
data the standard deviation of the peak position deter- 
mined varied from 2.3 to 4.8" for m --2 and from 2.9 
to 7.7" for m =6 ,  for computer-simulated data it 
varied from 1.6 to 5.2" for m = 2 and from 1.5 to 7" 
for m = 6. The minimum values are thus comparable 
f o r m = 2 a n d m = 6 .  

The variance of the peak position of a least-squares 
parabola is described by the formula (Wilson, 1965a; 
notation of the present paper) 

tr2(top)=(to2/Hn)O.75/X2[1)"(Up)] 2, (10) 

where H is the peak intensity, toh is the half-width, 
X = 2O/tOh is the standardized scanning range and 
v"(Up) is the second derivative at the peak of the 
underlying shape function. Thus, the dispersion of 
results is particularly remarkable for a small number 
of points, a narrow scanning range and a flat-topped 
profile [small value of v"(up)]. The latter two effects 
can be observed in Fig. 3, in which results of an 
additional test based on computer-simulated data 
are shown. A large enough and constant number of 
points (n = 21) and a changeable scanning step were 
used in the test. As shown in Fig. 3, the statistical 
error increases rapidly at narrower scanning ranges 
(here, at 2.Q=50").  That is because [cf. (10)] X 
decreases and because the 'observed' v"(up) tends to 
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Fig. 2. Peak-position determination by a polynomial 
approximation, as dependent on the scanning range 
20, for computer-simulated data. The figure legend 
is the same as that of Fig. 1. An ekception is that the 
true peak position, to e = 50.0", is in this case accurately 
known. 
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zero (intensities near the peak are almost equal). 
Therefore, the 'fiat-top effect' causes the variance of 
the peak position for a narrow scanning range to be 
greater than that estimated from (10) for a fixed 
shape of the profile. The variance of the peak position 
of polynomials of higher (and even) degrees 
(m = 4, 6, 8) is described by the semi-empirical depen- 
dence (Thomsen, 1974; notation of the present paper) 

tr2(top)~--(to2h/nn)O.O17m3(tan-I X ) / X  3, (11) 

derived for 0.5 < - X <- 1, under the assumption that 
the underlying profile is of Cauchy shape. Further- 
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more, the variance O'2(O9p) for given 20  is greater for 
polynomials of odd degrees ( m = 2 k + l ,  k is an 
integer) than for neighbouring polynomials of even 
degree (m = 2k). For example, for m = 3 it is about 
six times as big as for m = 2 (see Kirk & Caulfield, 
1977). 

With regard to the statistical error, it is therefore 
suggested that the scanning range is chosen to be 
as large as possible among those permitted by the 
statistical criterion [(3a)] and to avoid polynomials 
of odd degrees. Moreover, there is no special need 
for selecting polynomials of higher (and even) 
degrees, since the results are no more precise than 
those for a parabola, even if each polynomial is used 
in its proper range and a constant scanning step is 
used (so n increases for increasing m values). 
Equations (10) and (11) show some other possibilities 
of reducing the variance (see paper I, § 1.2) and so 
of reducing the actual error up to the limit defined 
by the systematic error (bias) [cf. (7), (8b)]. The basic 
problem is then to evaluate and reduce the bias. As 
shown in Figs. 1, 2 and 3, even within carefully 
selected scanning ranges there is an appreciable 
dependence of the mean value of the peak position 
on the scanning range, so it is difficult to avoid the 
likely bias. For real measurement data (Fig. 1) the 
largest bias [(8b)] and the stability were as follows 
[the stability, defined by (9), is given in parentheses]: 
1.6" (0.012) for m = 2 and 1.6" (0.006) for rn = 6; those 
obtained for computer-simulated data were: 0.7" 
(0.007) for m =2  and 4.6" (0.010) for m =6. Thus, 
although sixth-degree polynomials and, in general, 
higher-degree polynomials provide acceptable (in a 
statistical sense) results within a wide range of scan- 
ning ranges they do not give any supposed advantages 
over a parabola, such as less biased and more stable 
outcomes, even if each polynomial is used in its best 
range 20. So it is difficult to achieve the accuracy of 
1" using polynomial approximation since the bias 
alone is likely to exceed the limit. Only in the simplest 
case of a parabola can the bias of the peak position 
be estimated, and thence reduced by extrapolation, 
by use of the formula (Wilson, 1965a) 

ao~,,=6,,-Wo=2(n2/wh)[v'"(u,,)/v"(u,,)], (12) 

where v"(up) is the third derivative of the shape 
function at the peak. However, the underlying diffrac- 
tion profile must be known to obey the formula. 
Therefore, we shall return to the problem (§ 5) after 
an extensive discussion of various possible shape 
functions (§ 4). 

Fig. 3. Peak-position determination by an approximation with a 
parabola, as dependent on the scanning range 2/2, for computer- 
simulated data. A constant number of points, n = 21, and so a 
changeable scanning step A~, have been used. The symbols and 
the arrangement of the figure are analogous to those of Figs. 1 
and 2. 

4. The use of  shape functions 

4.1. Preliminary remarks 

From previous considerations (§ 3), shape func- 
tions, in view of the problem in question, could be 
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Table 1. Relations between the parameters Ul, u2 of  the collimator function and the shape parameters of 
approximating functions 

2 n m ) ]  '12 m = 5 = c o n s t a n t ,  n = 501 = c o n s t a n t ,  a = 0.1, [X . . . . .  12/( - = 1.052. N u m b e r s  g i v e n  in p a r e n t h e s e s  d e n o t e  s t a n d a r d  d e v i a t i o n s  
o f  p a r a m e t e r s .  

T h e  p s e u d o - V o i g t  T h e  P e a r s o n  VI I  
T h e  c o l l i m a t o r  f u n c t i o n  f u n c t i o n  f u n c t i o n  

u, u2 c ~h/~h m ~h/~h 
0.05 0.00 0.996 (4) 0.97 1.001 (3) 0.97 
0.10 0.00 0.994 (4) 0.96 1.003 (3) 0.96 
0.20 0.00 0.986 (4) 0.96 1.008 (3) 0.97 
0.50 0.00 0.935 (4) 0.99 1.046 (4) 1.05 
0.50 0.20 0.926 (4) 1.00 1.053 (4) 1.08 
1.00 0.00 0.804 (4) 1.12 1.166 (7) 1.48 
1.00 0.50 0.758 (5) 1.28 1.218 (9) 1.78 
2.00 0.00 0.561 (5) 1.35 1.562 (20) 2.42 
2.00 1.00 0.461 (8) 2.46 1.888 (43) 3.60 

T h e  J o h n s o n  
d i s t r i b u t i o n  

[(2)] 

b trh/t~ h 
0.688 (3) 1.29 
0.690 (3) 1.29 
0.694 (3) 1.32 
0.724 (4) 1.52 
0.730 (4) 1.56 
0.815 (6) 2.14 
0.854 (8) 2.37 
1.084 (14) 2.90 
1.285 (25) 3.96 

applied not only as approximating functions (i.e. for 
a direct approximation of the measurement data) but 
also as models of the shape of the diffraction profile 
[see (12)] to improve the results obtained using a 
parabola. 

However, the use of shape functions as approxi- 
mating functions and 'models' of the diffraction 
profile creates new problems. Although the statistical 
criterion [(3a)] based on real counting statistics (see 
paper I, § 2.6) is the only one needed to select the 
best model of the diffraction profile in the case of 
polynomial approximation, where the angular range 
and/or  the degree of polynomial is to be chosen, it 
may be insufficient in the case of more complex and 
specific descriptions. In particular, it is required that 
the function to be used should be continuous at its 
peak (see paper I, § 2.5) and should give a good 
approximation to well founded models of the diffrac- 
tion profile. The above requirements and their mean- 
ing for accurate peak-position determination will be 
considered in §§ 4.2, 4.3, 4.4 and 5. 

4.2. Shape functions and physical models 

To test the extent to which shape functions men- 
tioned in § 4.1 are capable of providing a satisfactory 
approximation to an arbitrary collection of data, one 
can check either the agreement between various sets 
of experimental data and approximating shape func- 
tions or the agreement between a model (or models) 
of the diffraction profile, representing various poss- 
ible measurement data, and approximating shape 
functions. The latter approach was applied in test 
calculations reported below. In the tests, two func- 
tions were used as models of the diffraction profile, 
a function describing the effect of in-plane collima- 
tion [paper I, (14a), (14b), (14c)] and a Voigt func- 
tion [paper I, (16a), (16b)], within large ranges of 
parameters defining their shapes. The functions dis- 
cussed in paper I, § 2.3 describe a great variety of 

experimental profiles. Three approximating fimctions 
were selected to be fitted to the models: a pseudo- 
Voigt function [paper I, (17a)], a Pearson VII func- 
tion [paper I, (18a), (18b)] and one of the Johnson 
distributions [(2)]. In the tests, all the functions men- 
tioned were used in their basic symmetric form to 
compa~re their shapes separately from the problem of 
asymmetry. A random component was added to the 
calculated values with the assumption of Poisson 
statistics for 'recorded" counts and the peak intensity, 
with H = 10 000 counts. To minimize the error due 
to a finite truncation level, wide enough ranges of 
arguments were used, so the intensities at the ends 
of the ranges did not exceed 0.5% of the maximum 
intensity. The goodness of fit was tested by comparing 
the mean standard deviations tr h obtained in the 
course of calculations by least-squares fitting with 
their expected values t~h [cf. paper I, (30a), (32)], 
using A' statistics (as described in § 2.2 above). Since 
the number of parameters was m = 5  for all 
approximating functions, and the number of observa- 
tions ranged from n =457 to n =605, the highest 
values of the ratio trh/d'h permissible for a model 
at the significance level a =0.1 were estimated 
from (3b). 

Results of the approximation of the first function 
(describing the in-plane collimation) by the shape 
functions selected are given in Table 1; those that 
relate to the Voigt function are given in Table 2. With 
regard to the results given in Tables 1 and 2, the 
following conclusions might be drawn: 

1. The best of the approximating functions con- 
sidered is the pseudo-Voigt function; it gives the 
lowest values of the ratio crh/d'h. If the broadening 
of the diffraction profile, in relation to the original 
Cauchy-shaped profile, is not very large, i.e. u~ <-0.5 
(Table 1) and r < 0.5 (Table 2), the goodness of fit is 
fully satisfactory and the form of the model function 
can be replaced by the shape function. For larger 
broadenings, the ratios Crh/~h are greater than expec- 
ted, so the approximation is unsatisfactory. 
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Table 2. Relations between the parameter r defining the shape of the Voigt function and shape parameters of 
approximating functions 

Numbers given in parentheses denote standard deviations of parameters. 

r 

0.05 
0.10 
0.20 
0.33 
0.50 
0.67 
1.00 
2.00 
5.00 

10.00 

The Voigt The pseudo-Voigt  The Pearson VII 
funct ion funct ion funct ion 

rl (Orh / l~ rh )ma  x C Orh /or  h m crh/t~ h 

457 1.054 1.000 (4) 0.97 1.000 (3) 0.97 
459 1.054 0.992 (4) 0.99 1.1305 (3) 0.99 
465 1.054 0.976 (4) 1.01 1.016 (3) 1.01 
471 1.053 0.948 (4) 0.99 1.036 (4) 1.02 
477 1.053 0.888 (4) 1.07 1.084 (4) I. 19 
485 1.053 0.827 (4) 1.07 1.142 (6) 1.35 
501 1.052 0.701 (4) 1.15 1.294 (I0) 1.80 
545 1.050 0.474 (4) 1.22 1.827 (24) 2.29 
681 1.045 0.220 (4) 1.22 3.904 (88) 1.81 
605 1.047 0.089 (3) 1.19 8.433 (168) 1.16 

The Johnson  
distribution 

[equation (2)] 

b o'h/~h 
0.688 (4) 1.34 
0.687 (4) 1.39 
0.620 (4) 1.45 
0.712 (4) 1.49 
0.752(5) 1.77 
0.796 (6) 1.96 
0.908 (8) 2.41 
1.234 (15) 2.67 
2.086 (34) 1.91 
3.305 (48) 1.17 

2. Somewhat worse results are obtained using the 
Pearson VII function. The ranges of parameter values 
of respective model functions for which a satisfactory 
agreement can be achieved are narrower than in the 
former case, Ul-<0.5 (u2=0) or r<0.33. 

3. For the Johnson distribution [(2)] and the model 
functions considered, the ratio trh/t~h always exceeds 
its permissible value, irrespective of values of the 
parameters r, ul and u2. Thus, the distribution can 
be considered to be 'different' from the given models. 

One may doubt whether the conclusions concern- 
ing the approximation of the selected models of the 
diffraction profile by given shape functions are valid 
for all possible forms of the complete physical model 
of the diffraction profile, which is not available in 
analytical form. In the face of the lack of further and 
'general enough' information on the model, this ques- 
tion remains open. Otherwise, similar tests to those 
described in the paper might be performed for other 
models and other shape functions. 

4.3. Preliminary selection of shape functions 

The functions used in the tests reported in § 4.2 
were taken within large ranges of arguments. Since 
for narrower ranges, say no larger than two half- 
widths, a better agreement between a model (or a set 
of measurement data) and an approximating function 
is possible, it was decided to perform test calculations 
on all the shape functions mentioned in § 4.2. 

The shape functions selected, a Pearson VII func- 
tion and a pseudo-Voigt function, in contrast to the 
asymmetric distributions of Johnson, are defined in 
an ideal symmetric form and so need a correction to 
allow for asymmetry. Various forms of such correc- 
tions were discussed in paper I, § 2.5. Some of them, 
viz the simplest and most convenient for application 

- a linear multiplier, a quadratic multiplier modified 
by the function 'sign', an exponential multiplier and 
a pair of split functions - were used in the present 
tests. 

To examine the effect of the corrections for asym- 
metry on the peak-position determined, further test 
calculations were performed in which a small and 
constant number of points (n--11),  and therefore a 
changeable scanning step, were used. As shown in 
Fig. 4, the highest accuracy and stability are obtained 
with a linear multiplier; a modified quadratic multi- 
plier gives worse results. In the case of split functions, 
there is a remarkable dependence of the peak position 
on the scanning range. In consequence, the latter 
description has been rejected as useless for the pur- 
pose of the paper. Moreover, it is doubtful whether 
an approximation with the split functions, leading to 
such a large error in the peak position (and so in the 
Bragg angle), could be used for other purposes. It 
should be added that the statistical criterion [(3a)] 
is not sensitive enough to such formal defects. As a 
consequence (see Fig. 4; black points denote results 
rejected), some highly biased results may be accepted 
while other more correct results may be rejected by 
the goodness of fit test. 

4.4. Peak-position determination using selected shape 
functions 

Outcomes of test calculations, more detailed than 
those in § 4.3, in which selected shape functions 
[Johnson's distribution given by (2), a Pearson VII 
and a pseudo-Voigt function] and selected asym- 
metric factors (linear or modified quadratic) were 
examined, are shown in Figs. 5 and 6. With regard 
to the form of the correction for asymmetry to be 
used with the basic symmetric function (here a Pear- 
son VII or a pseudo-Voigt function), present tests 
confirm the superiority of the linear factor, which 
ensures the continuity of the resultant description, 
over the modified quadratic factor, which leads to a 
discontinuity at the peak. 

As shown in Figs. 5 and 6, the mean (over 2~)  
value of the peak position determined for each 
approximating function, even when the statistical 
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criterion [(3a)] is satisfied, is different, while the 
stability of results is in each case much higher (of the 
order of 0.001) than for polynomials. For real 
measurement data (Fig. 5) the range of the mean 
values of the peak position and the stabilities obtained 
[the latter, defined by (9), given in parentheses] were 
as follows: 47.4-48.5" (0.003) for the Johnson 
distribution [(2)]; 49.2-49.6" (0.002) for the Pearson 
VII function with the modified quadratic multiplier 
1 - s i g n  (u)~u 2 and 48.9-49.8" (0.002) for the function 
with the linear multiplier 1 + ~:u; 48.7-49.6" (0.002) 
for the pseudo-Voigt function with the modified quad- 
ratic multiplier and 49.8-50.5" (0.001) for the function 
with the linear multiplier. 

Thus, while determining the 'true' peak position, 
one has a choice between taking the average value 
of all the results, i.e. of all the mean values (for 
different functions) permitted by the statistical 
criterion [here, 49.20 (64)"] or taking the mean (over 
2,Q) value of the results obtained by using one selec- 
ted well founded description. With regard to results 
of the test calculations and some preliminary informa- 
tion on the descriptions used (gathered in §§ 4.1, 4.2, 
4.3; see also paper I, §§ 2.3, 2.4, 2.5), the latter 
approach seems completely justified. The only 
description, from among all those considered, that 
is simple, continuous at its peak and closely rela- 
ted to physical models of the diffraction profile - a 
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Fig. 4. The dependence of the peak position 
determined on the scanning range for various 
descriptions of asymmetry: (~ a linear factor, 
(~) a quadratic factor, (~) a pair of  split func- 
tions. (a), (c )Pearson VII function; (b), (d) 
pseudo-Voigt function. Results shown in (a) 
and (b) are based on real measurement data 
while those in (c) and (d) are based on com- 
puter-simulated data. A constant number of 
measurement points, n = I1, was used. The 
open points A and [] relate respectively to a 
linear asymmetric factor and a modified quad- 
ratic factor. The filled points (&, I ,  O) relate 
to cases in which the statistical criterion [(3a)] 
is not satisfied. 
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Fig. 5. Peak-position determination based on the approximation of  real measurement data by means of  various shape functions 
dependent on the scanning range. Diagrams (I) relate to the Johnson (1949) distribution [(2)]; diagrams (II) relate to the Pearson 
VII function; diagrams (III) relate to the pseudo-Voigt function. (a) The dependences of  the mean peak position on the scanning 
range (broken lines). Limits of  the confidence intervals (a = 0.1, y = M - 1  = 9 )  are marked on perpendicular sectors driven for 
selected scanning ranges ( 2 0 - - 2 0 0 ,  4 0 0 , . . . ,  1000"). The horizontal dashed line ( - - - )  at tOp = 49.9" shows the approximate 'true' 
peak position. (b) The standard deviation tr h. (c) The R factor. Values resulting from calculations by least-squares fitting are marked 
with points; corresponding estimated values are marked with a continuous line (real counting statistics) and broken line (Poisson 
counting statistics). The open points A and [] relate respectively to a linear asymmetric factor and a modified quadratic factor. The 
filled points ( 0 ,  A, II) relate to the cases in which the statistical criterion [(3a)]  is not satisfied. A constant scanning step, A++ = 20", 
was used. 
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Fig. 6. Peak-position determination based on the approximation by means of  a shape function dependent on the scanning range. 

Computer simulated data were used. Diagrams (I) relate to the Pearson VII function; diagrams (II) relate to the pseudo-Voigt 
function. Further details of  the figure legend are as in Fig. 5. An exception is that the true peak position, cop = 50.0 °, is accurately 
known in this case. 
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pseudo-Voigt function with a linear multiplier allow- 
ing for asymmetry - gives at the same time the most 
stable results. Therefore, the mean value (over 212) 
of the peak positions obtained using the above 
approximating function, too = 49.96 (23)", was accep- 
ted as a definition of the 'true' peak position. The 
maximum bias in this case was 0.54". 

With regard to test~ based on computer-simulated 
data, the effect of the basic form of the approximating 
function (a pseudo-Voigt or a Pearson VII function) 
on the peak positions determined was less evident 
than in the case of real measurement data, whereas 
the form of correction for asymmetry was of primary 
importance. Results obtained using a Pearson VII 
function and a pseudo-Voigt function, with a linear 
factor in each case (Fig. 6), were comparable: the 
maximum bias [cfi (8b)] and the stability [the latter, 
defined by (9), is given in parentheses] were 0.6" 
(0.0009) and 0.8" (0.0009), respectively; those 
obtained using a pseudo-Voigt function with a 
modified quadratic multiplier were evidently worse, 
1.5" (0.0013), while the ones obtained using a Pearson 
VII function with the quadratic multiplier (strongly 
biased, though stable) were rejected because of 
unsatisfactory goodness of fit. It is interesting to note 
that the average value of all the results permitted by 
statistical criteria was 49.24", so the mean bias for 
such an approach was -0.76" and thus twice as big 
as in the case of the individual functions used with 
a linear multiplier (-0.34" for a Pearson VII function, 
+0.36" for a pseudo-Voigt function). Therefore, the 
former approach, based entirely on statistical criteria, 
has no advantages over the latter, in which all criteria 
considered are taken into account. 

The standard deviation of the peak position deter- 
mined using shape functions ranged from 2.6 to 3.6" 
for real data and from 1 to 2" for computer-simulated 
data and the Poisson counting statistics, so was, on 
average, not greater than in the case of polynomial 
approximation. Although the likely actual error in 
peak position for a single set of data and a single 
peak-position determination (i.e. for one scanning 
range) is greater than permitted, it is possible to 
reduce it by repeated measurements or by other 
means, as mentioned in paper I [§ 1.1, points (i), (ii), 
(iii), (iv)], up to the limit defined by the bias (here 
-~ 0.5"). 

5. Refinement of results obtained using a least-squares 
parabola based on the proper model of the 

measured profile 

As one may conclude from results of the test calcula- 
tions reported in § 3, related to a parabola, and from 
(12), which explains them, the best approach to the 
accurate peak-position determination in this case is 
not to avoid bias by selecting a very narrow scanning 
range (that would lead to a rapid increase of the peak 
variance) but to reduce both the bias and the statistical 

error by using all information available concerning 
the method and the model. As will be shown below, 
the best form of the model of the diffraction profile 
is of primary importance for such a task. 

Let us assume that the diffraction profile can be 
described by 

v(u) = (1 + ~u)v,(u), (13) 

where vs(u) is a symmetric function, such that 
v~(0)=l ,  G ( 0 ) = 0 ,  v~(0)= V2 ( -2-< V2-<-1.4 for 
well founded model functions). For moderate 
asymmetry, ~:2<< 1 (usually ~:=0.1, 0.2), the peak 
position of v(u) is u p = - ¢ / V 2 ,  so u~,<<l, 
v"(ue)'-" V2, v"'(up)=3¢V2. As a consequence, (12) 
will take the form 

tOo=3~XJ"~+tOp =6(~¢/tOh)J'~2+top = EJ"]2+F, (14) 

where E = 6~/toh and F = tOp are parameters that are 
independent of the scanning range and of the shape 
of the underlying symmetric function V~(u). These 
can be estimated from a set of tOo values determined 
for various scanning ranges. The extrapolation of 
results to .O = 0 leads, theoretically, to the best peak 
position, tOo = F = tOp. In practice, in the case of the 
data used in the present paper (described in § 2.1), 
the residual bias after the extrapolation of results 
obtained using a parabola [(14)] was less than 0.25" 
[see Figs. l ( a )  and 2(a)].  

As far as the class of models assumed above leads 
to an interpolation of results with a parabola (14)], 
and so to final results comparable to those obtained 
using the well founded shape functions [see § 4], 
models in which some other descriptions of asym- 
metry are used may lead to false results. 

For the shape functions in the form 

v( u) = ( 1 - s~u2)v , (  u) (15) 

and for split functions described by the formula 

v(u) :vs (u*) ,  (16) 

where u*=u/(1-s~o) , s=sign(u)  and vs(u) is as 
above, we have Up =0,  v"( up ) ~-1/2 and v '" (up)=0.  
Equation (12) then takes the form 

AO)p =0, (17) 

so does not allow for any bias and is not capable of 
expressing the observed dependence of the peak posi- 
tion on the scanning range. 

The above results serve as an additional argument 
for using a linear multiplier [(13)], rather than a 
modified quadratic multiplier or a pair of split func- 
tions, to model the asymmetry. 

6. Concluding remarks 

It was shown that the high-accuracy peak-position 
determination must be based on a reasonable physical 
and statistical model of the measured diffraction 
profile. 
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Knowledge of variances of recorded counts (their 
mean level, at least) is necessary for providing an 
objective criterion of the goodness of fit [(3a)]. 
However, the satisfactory agreement, in a statistical 
sense, between the measurement data and the 
approximating function is no guarantee of accurate 
enough results. The differences obtained for different 
approximating functions, even if well fitted to the 
data, and/or  for different ranges of arguments may 
be greater than the accuracy desired (here 1", i.e. 
3 x 10-4°). 

In particular, the results obtained using polynomial 
approximation are strongly dependent on the scan- 
ning range, while those obtained for a reasonable 
(continuous at its peak) shape function show much 
higher stability. Therefore, it is suggested that the 
calculations be based on a well founded shape func- 
tion rather than on a polynomial. The precision of 
all the results obtained is comparable, if each function 
is used in an appropriate scanning range, and is 
dependent on the statistics of recorded counts. 

As results from the tests performed, the best shape 
function considered is the pseudo-Voigt function with 
a linear (or exponential) asymmetric factor. The func- 
tion may be applied as an approximating function 
in direct calculations or may serve as a model for 
reducing the bias of results obtained for different 
scanning ranges using a least-squares parabola as an 
approximating function. 

With regard to data analysis in the Bond method, 
in general, two basic approaches are possible. 

(i) Determine the peak positions from diffraction 
profiles distorted by aberrations, calculate the Bragg 
angle and then introduce all necessary corrections 
using suitable formulae, mentioned in paper I, § 1.1. 

(ii) Separate the underlying original profiles from 
the measured profiles by a deconvolution in relation 
to all the physical and apparatus functions causing 
distortions and then determine the peak positions of 
the pure profiles and hence the Bragg angle, free from 
systematic errors. 

The first approach [(i)] was used here, as in the 
original paper by Bond (1960) and, consequently, in 
numerous following papers (reviewed by Gatdecka, 
1992). Method (i) is simpler than its alternative, (ii), 
because it does not require detailed information on 
individual distributions as factors of the complete 
convolution model of the measured profile and does 
not involve additional complex calculations (decon- 
volution). There are, however, justifiable doubts as 
to whether the corrections being introduced in (i) 
have been estimated properly. The possible errors 
connected with the corrections might result, in this 
case, from the following reasons: (a) uncertainty of 
the levels of the factors causing distortions (such as 
the inclination of the crystal or the collimator in 
relation to the plane of diffraction, for example); (b) 
possible differences between distributions used for 

the theoretical evaluation of the aberrations and cor- 
responding real distributions; and (c) nonadditive (in 
general) corrections calculated for the peak position, 
in contrast to those related to the centroid (see Wilson, 
1963, 1965b). Recently, some of the corrections have 
been verified and recalculated (Berger, 1986; Hiirtwig 
& Grosswig, 1989). 

The second method [(ii)] might offer an advantage 
over the former method [(i)] but only in the case 
when the respective individual distributions were 
accurately known. Moreover, one could foresee some 
computational problems, not occurring in (i), con- 
nected with the deconvolution and resulting from 
finite truncation limits, for instance. Some examples 
of the practical use of (ii), although not in connection 
with the Bond method, have recently been reported 
by Berger (1990) and Berti (1991). It would be inter- 
esting to compare the possibilities of the second 
approach [(ii)] with the Bond (1960) method. 

However, in both case (i) and case (ii), the proper 
method of the peak-position determination is 
required and the present conclusions are valid. 
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the manuscript and valuable discussions. The author 
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